On Banach spaces of vector-valued random variables and their duals motivated by risk measures

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compactness in Vector-valued Banach Function Spaces

We give a new proof of a recent characterization by Diaz and Mayoral of compactness in the Lebesgue-Bochner spaces L X , where X is a Banach space and 1 ≤ p < ∞, and extend the result to vector-valued Banach function spaces EX , where E is a Banach function space with order continuous norm. Let X be a Banach space. The problem of describing the compact sets in the Lebesgue-Bochner spaces LpX , ...

متن کامل

Locally Uniformly Convex Norms in Banach Spaces and Their Duals

It is shown that a Banach space with locally uniformly convex dual admits an equivalent norm that is itself locally uniformly convex.

متن کامل

Vector–valued Walsh–Paley martingales and geometry of Banach spaces

Abstract The concept of Rademacher type p (1 ≤ p ≤ 2) plays an important role in the local theory of Banach spaces. In [3] Mascioni considers a weakening of this concept and shows that for a Banach space X weak Rademacher type p implies Rademacher type r for all r < p. As with Rademacher type p and weak Rademacher type p, we introduce the concept of Haar type p and weak Haar type p by replacing...

متن کامل

On the character space of Banach vector-valued function algebras

‎Given a compact space $X$ and a commutative Banach algebra‎ ‎$A$‎, ‎the character spaces of $A$-valued function algebras on $X$ are‎ ‎investigated‎. ‎The class of natural $A$-valued function algebras‎, ‎those whose characters can be described by means of characters of $A$ and‎ ‎point evaluation homomorphisms‎, ‎is introduced and studied‎. ‎For an‎ ‎admissible Banach $A$-valued function algebra...

متن کامل

Vector-valued coherent risk measures

We define (d, n)−coherent risk measures as set-valued maps from Ld into IR satisfying some axioms. We show that this definition is a convenient extension of the real-valued risk measures introduced by Artzner, Delbaen, Eber and Heath (1998). We then discuss the aggregation issue, i.e. the passage from IR−valued random portfolio to IR−valued measure of risk. Necessary and sufficient conditions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Banach Journal of Mathematical Analysis

سال: 2018

ISSN: 1735-8787

DOI: 10.1215/17358787-2017-0026